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ABSTRACT 13 
 14 
The universe of uncharacterized proteins is expanding far faster than our ability to 15 
annotate their functions through laboratory study. Computational annotation approaches 16 
rely on similarity to previously studied proteins, thereby ignoring unstudied proteins. 17 
Coevolutionary approaches hold promise for injecting new information into our 18 
knowledge of the protein universe by linking proteins through 'guilt-by-association'. 19 
However, existing coevolutionary algorithms have insufficient accuracy and scalability to 20 
connect the entire universe of proteins. We present EvoWeaver, an algorithm that 21 
weaves together 12 signals of coevolution to quantify the degree of shared evolution 22 
between genes. EvoWeaver accurately identifies proteins involved in protein complexes 23 
or separate steps of a biochemical pathway. We show the merits of EvoWeaver by 24 
partly reconstructing known biochemical pathways without any prior knowledge other 25 
than that available from genomic sequences. Applying EvoWeaver to 1,545 gene 26 
groups from 8,564 genomes reveals missing connections in popular databases and 27 
potentially undiscovered links between proteins.  28 



 

 

INTRODUCTION 29 
 30 
 Our ability to capture the protein universe with genome sequencing far outpaces our 31 
ability to investigate individual proteins. A select few proteins have historically received 32 
a disproportionate amount of study1-3. This annotation inequality hinders biomedical 33 
progress by neglecting many proteins that could be important determinants of health4. 34 
Only a small fraction of uncharacterized proteins can be automatically annotated via 35 
similarity to experimentally investigated proteins of known function5-7. The sparsity of 36 
high-quality annotations exacerbates the problem of non-specific and low-confidence 37 
annotations that proliferate across genomes8,9. Thus, computational approaches to infer 38 
function without dependence on prior knowledge are acutely needed. 39 
 Computationally annotating the remainder of the protein universe requires 40 
establishing connections with characterized proteins to generate hypotheses about 41 
function through 'guilt by association'10. Shared function necessitates that protein-42 
encoding genes coevolve in the same cell, thereby leaving behind a molecular signal of 43 
coevolution11. Four primary approaches are used to identify coevolution: phylogenetic 44 
profiling12, phylogenetic structure13, gene organization14, and sequence-level methods15. 45 
Each of these coevolutionary signals is an outcome of a shared selection pressure 46 
acting on groups of genes. To date, these four coevolutionary approaches have 47 
primarily been applied independently. Even large databases of functional associations, 48 
such as STRING, only consider evidence from a small subset of coevolutionary 49 
approaches16. 50 
 Although coevolutionary analyses have shown great potential for predicting functional 51 
associations17-24, scalability is a major impediment to comprehensive application on 52 
large datasets. The era of big data holds the promise of distinguishing coevolution from 53 
other drivers of molecular evolution25. Additionally, holistic evaluation of many 54 
coevolutionary signals offers a means of amplifying weaker signals to make higher 55 
accuracy predictions. For example, conserved genes will not display a phylogenetic 56 
profiling (i.e., presence/absence) signal but may show patterns of gene organization. 57 
Combining disparate coevolutionary signals and scaling to larger datasets requires 58 
inventing new approaches for discerning signal from noise. 59 
 Coevolutionary analyses have the potential to infer functional associations directly 60 
from sequencing data in a way that is agonistic to prior annotations, thereby overcoming 61 
the current reliance on extrapolating from existing knowledge that compounds 62 
annotation inequality. Here, we set out to develop a scalable approach to extract and 63 
combine coevolutionary signals for predicting functional associations between protein-64 
coding genes. This required improving upon existing approaches to scale to larger input 65 
data and incorporate statistical testing. We unite these signals of coevolution using 66 
machine learning models to quantify the degree of functional association between 67 
genes. Our approach, named EvoWeaver, serves as a high-quality hypothesis 68 
generator to help extend our knowledge of the protein universe. 69 
 70 
RESULTS 71 
 72 



 

 

 Existing coevolutionary algorithms have widespread issues with scalability, 73 
interoperability, and interpretability25. We chose to implement all our coevolutionary 74 
analyses from scratch within a single software package to standardize user interaction 75 
and allow for easy application of ensemble methods. Our approach, named EvoWeaver, 76 
takes as input a set of phylogenetic gene trees and optional metadata (Fig. 1a). 77 
EvoWeaver then performs four types of coevolutionary analysis, comprised of 12 78 
algorithms optimized for scalable performance. These component predictors are 79 
combined using a machine learning classifier to compute a strength of coevolution 80 
between every pair of gene groups. From this, users can generate novel inferences or 81 
hypotheses about gene function. 82 
 The first type of coevolutionary analysis, phylogenetic profiling, investigates patterns 83 
of presence/absence or gain/loss of genes, which manifests when multiple genes work 84 
in concert (Fig. 1b). While presence/absence analyses have been successfully used to 85 
predict gene function12,25-27, existing approaches are susceptible to biases from small 86 
sample sizes or low evolutionary divergence28. We addressed these biases with a novel 87 
algorithm (G/L Distance) that examines the distance between gain/loss events to 88 
measure compensatory changes rather than extant patterns. We also incorporated 89 
statistical testing into existing measures of presence/absence patterns12,29 (P/A Info, 90 
P/A Jaccard) and correlation of ancestral states30 (G/L Correlation). The end result is a 91 
category of algorithms for identifying coevolution between gene groups that are not 92 
highly conserved. 93 
 The second type of coevolutionary analysis, phylogenetic structure, uses the fact that 94 
functionally associated genes tend to evolve in tandem, giving rise to similar 95 
genealogies (Fig. 1c). Commonly used phylogenetic structure approaches include 96 
MirrorTree and ContextTree31-33, although these approaches scale poorly due to high 97 
computational complexity. We addressed this issue by introducing novel algorithms (RP 98 
MirrorTree, RP ContextTree) that use random projection to decrease computational 99 
overhead and improve accuracy by reducing redundant information. Random projection 100 
provides the added advantage that computation can be distributed across computers, 101 
unlike in SVD-phy34, allowing EvoWeaver to process very large datasets on compute 102 
clusters. Additionally, we introduce the use of tree distance metrics (Tree Distance) to 103 
analyze coevolution via topological differences in genealogies35. Taken together, these 104 
algorithms facilitate inference of coevolution among conserved gene groups. 105 
 The third type of coevolutionary analysis, gene organization, leverages the fact that 106 
functionally linked genes tend to colocate on the genome to facilitate gene regulation 107 
and horizontal gene transfer36-38 (Fig. 1d). These approaches most commonly employ 108 
profile hidden Markov models, such as antiSMASH39-41. While these approaches 109 
perform well on functional prediction, they rely on a priori knowledge about genes that 110 
colocalize. We circumvented this limitation by introducing an algorithm that compares 111 
the number of coding regions separating genes (Gene Distance). Our approach is 112 
similar to STRING’s colocalization metric, which measures the number of nucleotides 113 
separating genes16, but STRING's approach fails to consider that low rates of 114 
evolutionary divergence can inflate evidence of colocalization. We address this issue by 115 
using Moran’s I to calculate the extent to which genes remain colocalized in spite of 116 



 

 

evolutionary divergence. Additionally, EvoWeaver analyzes the conservation of relative 117 
transcriptional direction (Transcription Info), since this also indicates functional 118 
association42. Collectively, these algorithms provide evidence of coevolution among 119 
conserved gene groups on the same chromosome. 120 
 The last type of coevolutionary analysis, sequence-level methods, looks at sequence 121 
patterns across gene groups, which are sometimes indicative of physical interactions 122 
between gene products43 (Fig. 1e). Direct coupling analysis is a well-known approach in 123 
this category44-46, but it suffers from high computational complexity. Instead, we 124 
extended a prior approach based on mutual information to predict interacting sites 125 
between sequences47. EvoWeaver analyzes the extent of these site-wise interactions to 126 
construct an overall score (Sequence Info). Additionally, EvoWeaver compares gene 127 
sequence natural vectors (Gene Vector), which carry evidence of functional association 128 
and can be quickly computed48. These algorithms provide additional evidence of 129 
coevolution for physically interacting gene products. 130 
 These four categories span levels of coevolution from the organism (phylogenetic 131 
profiling) to the genome (gene organization) to the gene (phylogenetic structure) to the 132 
sequence. Since our component analyses individually capture different facets of 133 
coevolution, we sought to combine their strengths into a single comprehensive estimate 134 
of evidence for functional association between gene pairs. To this end, we trained three 135 
machine learning classifiers (logistic regression, random forest, and neural network) on 136 
sets of protein-coding gene pairs with known functional associations (Fig. 1a). While 137 
these ensemble models require a priori knowledge to calibrate their predictions, after 138 
training they permit the extension of this knowledge to gene pairs with previously 139 
unknown associations and no relationship to the training set. 140 
 141 
Ensemble methods accurately identify functionally associated genes 142 
 143 
 Selection of high-quality ground truth datasets for coevolutionary analysis is a 144 
challenging task25. As with previous studies34,49, we relied upon the Kyoto Encyclopedia 145 
of Genes and Genomes database (KEGG) because it is well-curated and 146 
experimentally validated50,51. KEGG provides a hierarchical ontology of biochemical 147 
pathways consisting of orthologous gene groups (KO groups) participating in protein 148 
complexes (Fig. 1f) and/or enzymatic reactions within modules (Fig. 1g). Modules are 149 
the building blocks of larger biochemical pathways. We first sought to validate the 150 
performance of EvoWeaver at identifying KO groups within the same complex. We 151 
anticipated a strong coevolutionary signal for these pairs because of their mutual 152 
dependence. Each algorithm's performance was graded on its ability to distinguish 867 153 
pairs of KO groups that complex (positives) versus 867 randomly selected pairs of 154 
unrelated KO groups (negatives). The negative set was constructed from a weighted 155 
random sample of 57,321 unrelated KO groups. Weighted sampling reduces risk of 156 
overfitting by matching the distribution of data features in the negative set to the positive 157 
set. 158 
 Almost all coevolution algorithms performed well at identifying KO groups involved in 159 
the same complex (Fig. S1). Sequence-level methods performed slightly worse than 160 



 

 

other categories of coevolutionary signal. This outcome was expected because many 161 
non-interacting proteins appear to physically interface similarly to interacting proteins52. 162 
The predictions of most algorithms were weakly correlated with each other, which 163 
suggests combining signals could further improve performance (Fig. S1). To this end, 164 
we evaluated three ensemble methods (Logistic Regression, Random Forest, and 165 
Neural Network) using five-fold cross validation. All ensemble methods displayed 166 
predictive power exceeding component coevolutionary signals, with Random Forest 167 
performing the best (Fig. S1). 168 
 Given EvoWeaver's excellent performance on the Complexes benchmark, we next 169 
sought to establish its ability to identify functionally associated protein-coding genes that 170 
were not involved in the same protein complex. To this end, we developed the Modules 171 
benchmark as a set of 1,948 pairs of gene groups acting in adjacent steps of a 172 
biochemical pathway (positives) and 1,948 randomly selected pairs from disconnected 173 
pathways (negatives). This task is more challenging because proteins involved in the 174 
same module need not physically interact (Fig. 1g). As shown in Figure 2, performance 175 
of component algorithms on the Modules benchmark was slightly worse than on the 176 
Complexes benchmark. However, ensemble methods retained high performance 177 
(AUROC of 0.981 for Random Forest) and greatly outperformed individual 178 
coevolutionary signals. The large gap between ensemble and component predictors 179 
highlights the importance of using multiple coevolutionary signals to infer functional 180 
associations. 181 
 182 
EvoWeaver infers hierarchical relationships among genes 183 
 184 
 Coevolutionary relationships are stratified across a gradient of associations within the 185 
cell. For this reason, it would be ideal to predict a strength of coevolution across a 186 
hierarchy of multi-level relationships among gene groups. We evaluated the Random 187 
Forest model on pairs of KEGG module blocks belonging to each of five classes: Direct 188 
Connection, Same Module, Same Pathway, Same Global Pathway, and Unrelated 189 
module blocks. These classes are arranged in a hierarchy of decreasing functional 190 
association. Accurate classification would imply EvoWeaver can construct a hierarchical 191 
classification scheme of genes and recapitulate the relationships in KEGG. We then 192 
used five-fold cross validation to predict class membership for 1,018,353 pairs of 193 
module blocks. Most Random Forest predictions were assigned to the correct class or 194 
the adjacent class (Fig. S2), even when requiring at least 50% confidence for prediction 195 
(Fig. 3a). Unsurprisingly, the model frequently confused the Same Global Pathway and 196 
Unrelated classes, which are both expected to contain weakly coevolving genes. 197 
 EvoWeaver is based on the premise that a comprehensive view of coevolution is 198 
preferable to any single source of coevolutionary signal. Along these lines, all 12 199 
predictors contributed substantially to the ensemble classifier's accuracy (Fig. 3b). The 200 
three top predictors (G/L Correlation, RP ContextTree, and Gene Distance) were also 201 
the top predictors in each of the three highest performing categories in the Modules 202 
benchmark (Fig. 2). We attributed this observation to the fact that distinct categories of 203 



 

 

coevolution were generally more weakly correlated with each other (Fig. 2), suggesting 204 
they provide complementary information. 205 
 The Random Forest ensemble classifier was best at distinguishing the top two from 206 
bottom three hierarchical classes. Hence, we tested whether these predictions could be 207 
used to recapitulate KEGG pathways by building a network of module blocks with 208 
connections between pairs predicted as Direct Connection or Same Module. We applied 209 
parameter-free label propagation to detect communities within this network53. A 210 
randomly selected community is shown in Figure 3c-d, which included all module blocks 211 
involved in the prodigiosin biosynthesis pathway. EvoWeaver correctly identified all but 212 
two Direct Connections within the pathway and properly distinguished the two modules 213 
within the pathway. However, EvoWeaver incorrectly classified some Same Module 214 
pairs as Direct Connection, and predicted an element of the actinorhodin biosynthetic 215 
pathway (actIV2,4) to be involved in this pathway. This was likely a spurious connection 216 
due to many Streptomyces species producing both actinorhodin and undecylprodigiosin. 217 
This result suggests EvoWeaver's predictions can be used to hypothesize biochemical 218 
pathways, although EvoWeaver's predictions do not provide directionality to biochemical 219 
steps. 220 
 221 
EvoWeaver outperforms STRING without reliance upon external data 222 
 223 
 STRING is one of the most comprehensive databases of knowledge about 224 
functionally associated genes. One of STRING's stated goals49 is to predict genes 225 
belonging to the same non-global pathway in KEGG, which corresponds to 226 
EvoWeaver's Direct Connection, Same Module, and Same Pathway classifications. 227 
STRING's Total Score is a composite of seven evidence streams16. We applied 228 
STRING's formula for Total Score to quantify the marginal benefit of each evidence 229 
stream. External data, including mining the literature for cooccurrence of terms (Text 230 
Mining) and knowledge bases such as KEGG (Databases), provided the majority of 231 
STRING's predictive performance (Fig. 4a). EvoWeaver outperformed STRING at its 232 
stated goal of predicting pairs of gene groups sharing a functional pathway in KEGG 233 
using purely coevolutionary signal without relying on KEGG itself (Fig. 4a). This makes 234 
EvoWeaver particularly powerful for identifying unknown functional associations without 235 
reliance on prior knowledge, which may help to mitigate the problem of annotation 236 
inequality1,2. As expected, STRING's coevolutionary evidence streams (Cooccurrence, 237 
Gene Neighborhood) were correlated with comparable signals derived by EvoWeaver 238 
(Fig. 4b). 239 
 240 
EvoWeaver can inform novel hypotheses 241 
 242 
 EvoWeaver's primary purpose is to serve as a generator for novel hypotheses about 243 
functional associations. As a proof of concept, we investigated the top 15 244 
misclassifications wherein a gene pair was assigned to Direct Connection or Same 245 
Module with high confidence when it ostensibly belonged to Same Global Pathway or 246 
Unrelated in KEGG (Supplemental Data). While some putative mispredictions had no 247 



 

 

clear evidence for or against a functional relationship in the literature, several were 248 
actually correct predictions between clearly related gene groups that have yet to be 249 
connected in the same KEGG module. Several purported mispredictions were for genes 250 
encoding proteins involved in closely linked plant biochemical pathways, such as 251 
gibberellin and abscisic acid biosynthesis, which are both known to regulate plant 252 
dormancy and germination54. Other alleged mispredictions were for gene pairs 253 
implicated in the same diseases, although there was insufficient experimental evidence 254 
to validate their functional association. The existence of quasi-mispredictions implies 255 
EvoWeaver can be used to identify errors or voids in our current understanding of 256 
molecular biology. 257 
 As a case study, we examined EvoWeaver’s top misprediction, which was between 258 
human genes B3GNT5 and ST6GAL1. These genes belong to the “Glycosphingolipid 259 
biosynthesis – lacto and neolacto series” and “N-glycan biosynthesis” pathways, 260 
respectively. Despite their connection being absent from the KEGG or STRING 261 
databases (Fig. 5a), B3GNT5 was experimentally shown to directly promote the 262 
expression of ST6GAL1 in ovarian cancer cell lines55. EvoWeaver predicted this pair to 263 
be Direct Connection with probability 0.72 or Same Module with probability 0.27 (Fig. 264 
5b). This prediction was supported by weak phylogenetic profiling evidence because of 265 
the high conservation of both genes (Fig. 5c), but there was strong evidence for gene 266 
organization due to conservation in gene proximity across the phylogeny (Fig. 5d). 267 
B3GNT5 and ST6GAL1 also displayed strong similarity in their genealogies (Fig. 5e) 268 
and moderate evidence for coevolutionary signal at the sequence level (Fig. 5f). This 269 
proof of concept demonstrates that EvoWeaver can be used to generate reasonable 270 
hypotheses about functional relationships. 271 
 272 
DISCUSSION 273 
 274 
 EvoWeaver represents a marked advancement in employing coevolutionary 275 
principles to the discovery of functional associations. In this work, we showed that 276 
EvoWeaver can capitalize on multiple sources of coevolutionary signal to outcompete 277 
individual algorithms at identifying relationships between gene groups. EvoWeaver's 278 
accuracy permitted us to construct a multi-level model of functional associations that 279 
was able to partly recapitulate experimentally validated KEGG pathways without any 280 
prior knowledge of the proteins other than their coding sequences and genomic 281 
locations. EvoWeaver's predictive performance was higher than STRING's for the same 282 
objective without any dependence on external data. Moreover, we demonstrated how 283 
EvoWeaver's predictions can be leveraged to infer novel functional associations that are 284 
absent from large databases of biological knowledge. 285 
 EvoWeaver excels at three characteristics that are necessary for the practical 286 
application of coevolutionary analyses on large-scale datasets. First, EvoWeaver is 287 
highly scalable owing to its optimized algorithms. We demonstrated this by applying 288 
EvoWeaver to 1,545 gene groups from 8,564 genomes across the tree of life. To our 289 
knowledge, this is the largest coevolutionary analysis to date, exceeding the 2,167 290 
genomes analyzed in previous work12,25. Unlike popular prior approaches, such as 291 



 

 

ContextTree or SVD-phy34,56, EvoWeaver's pairwise comparisons are independent and 292 
can be easily distributed across a cluster of computers. Second, EvoWeaver's 293 
predictions are higher accuracy because they incorporate multiple sources of 294 
coevolutionary signal, and each component algorithm incorporates statistical testing that 295 
mitigates spurious signals. Third, EvoWeaver standardizes the application of multiple 296 
algorithms within a single software package with consistent inputs and outputs. This 297 
addresses usability issues previously identified in reviews of coevolutionary analyses25. 298 
 Coevolution differs from protein-protein interactions in that it does not require any 299 
physical interaction. There exist many prior approaches to predicting protein-protein 300 
interactions, along with databases of known interactors45,46,57,58. Benchmarking 301 
functional association algorithms presents its own challenges, as proteins that do not 302 
physically interact may nevertheless be functionally associated. This renders common 303 
benchmarks for protein-protein interactions insufficient for benchmarking coevolutionary 304 
algorithms58-60. We chose to rely on the KEGG database as a source of experimentally 305 
validated functional associations within a multi-level hierarchy. Although KEGG is 306 
limited in size (i.e., 26,418 orthology groups), it is one of the few comprehensive 307 
sources of genomes and genes linked across pathways. 308 
 We anticipate EvoWeaver to be particularly useful for generating hypotheses that 309 
catalyze investigations into understudied proteins. EvoWeaver allows users to search 310 
through millions of gene pairs to find a comparatively small number of potential 311 
functional associations. EvoWeaver's predictions are particularly valuable when 312 
combined with network analyses or expert insights. In the future, EvoWeaver will assist 313 
in curating and supplementing large databases of biological knowledge to address 314 
errors and annotation inequality. We also expect EvoWeaver's predictions to be useful 315 
for other sequence features, such as non-coding RNAs, although protein-coding genes 316 
were the focus of this study. Most importantly, EvoWeaver empowers users to combat 317 
annotation inequality by predicting functional associations for the rapidly expanding 318 
collection of sequences with unknown function.  319 



 

 

ONLINE METHODS 320 
 321 
Construction of Benchmark Datasets 322 
 323 
 The goal of the Complexes benchmark is to judge algorithms’ ability to discern genes 324 
encoding proteins involved a complex versus genes encoding unrelated proteins. To 325 
this end, we identified all orthology groups belonging to a complex in KEGG61, for a total 326 
of 372 gene groups. We computed pairwise coevolutionary scores between orthology 327 
groups with at least three sequences that were involved in a complex, for a total of 358 328 
orthology groups. This resulted in 57,321 pairs that are not in the same pathway 329 
(unrelated pairs) and 867 pairs participating as required or optional components of the 330 
same complex. Positive pairs were defined as the 867 pairs from the same complex, 331 
and an equivalent number of negative pairs were drawn to create a balanced dataset for 332 
benchmarking. Random sampling of negative pairs was weighted in order to match the 333 
distribution in number of sequences per gene group to that of the positive pairs. This 334 
weighted sampling was used to mitigate the ability of algorithms to use the number of 335 
sequences per group as a proxy for functional association. 336 
 Next, we constructed the Modules benchmark to test algorithms’ ability to discern 337 
proteins acting in subsequent steps of a biochemical pathway versus unrelated proteins. 338 
We first identified all module blocks within the KEGG MODULES database. Each 339 
module block is a set of one or more orthology groups that perform a discrete step 340 
within a biochemical pathway (Fig. 1g). Each module was parsed from its definition on 341 
KEGG (Table S1), for a total of 369 modules. Positive test cases were defined as 342 
successive blocks in a module, and negative cases were defined as module blocks in 343 
separate modules not sharing a pathway in KEGG. Global and Overview Pathways 344 
were not considered, since their broad definition encompasses most proteins in KEGG. 345 
Blocks containing complexes were also excluded to prevent overlap with the Complexes 346 
benchmark. Since some orthology groups belong to multiple blocks, only pairs of blocks 347 
without overlap in orthology groups were assessed. The final Modules benchmark was 348 
comprised of 1,545 blocks with 1,948 positive pairs. An equivalent number of negative 349 
pairs were sampled in the same manner as the Complexes benchmark. 350 
 Having constructed two binary benchmarks, we sought to explore EvoWeaver's 351 
ability to distinguish interaction strengths among proteins. Accordingly, we used the 352 
relationships encoded in the KEGG PATHWAYS database to define multiple 353 
hierarchical levels of functional association. We assigned all pairs of module blocks into 354 
one of five categories: Direct Connection, Same Module, Same Pathway, Same Global 355 
Pathway, or Unrelated. The Same Pathway group comprises pairs of module blocks 356 
that share a pathway not in the Global and Overview Pathways category in KEGG, and 357 
the Unrelated group comprises pairs with no modules or pathways in common. We 358 
chose 50% confidence as the cutoff for classification (Fig. 3a) because these 359 
predictions have higher probability assigned to their predicted category than their sum 360 
of probabilities across all other categories. The confusion matrix at 0% confidence is 361 
shown in Figure S2. To look for novel connections (Fig. 5), we examined pairs 362 



 

 

belonging to Unrelated and Same Global Pathway groups that EvoWeaver predicted as 363 
being Direct Connection or Same Module. 364 
 365 
Preparing Gene Groups for Analysis 366 
 367 
 EvoWeaver takes as input a set of two or more gene trees, which may include 368 
sequences, gene indexes, and/or a species tree. It then applies the set of component 369 
algorithms for which it has the necessary input data types. We obtained amino acid 370 
sequences for each gene group from KEGG and used DECIPHER62 to trim paralogs, 371 
align sequences, and construct neighbor joining gene trees. In total, there were 8,564 372 
genomes with at least one gene present in the benchmarks. Species trees were 373 
estimated using the ASTRID algorithm63. To find each gene’s index within its genome, 374 
we downloaded complete genomes and coding sequences from NCBI following the 375 
reference links provided in KEGG. Of the 8,564 genomes present in the benchmarks, 376 
7,535 had genome sequences available. Coding sequences were matched to locations 377 
on the genome with the Biostrings (v2.68.1) package in R64,65 (v4.3.0). 378 
 379 
Coevolutionary Algorithms in EvoWeaver 380 
 381 
 The goal of EvoWeaver is to capture a holistic view of coevolution for predicting 382 
functional associations between groups of genes. To achieve this, we implemented 12 383 
algorithms from scratch that quantify different sources of coevolutionary signal. Each 384 
algorithm analyzes a pair of gene groups and returns a score between zero and one, 385 
where zero represents an absence of signal and more positive values imply greater 386 
coevolutionary signal. Some algorithms can provide scores between -1 and 1, in which 387 
case rare negative scores represent an inverse coevolutionary association. To correct 388 
for spurious signal resulting from insufficient information, we multiply all scores by their 389 
significance (1 – p-value). The resulting scores are combined into an overall prediction 390 
using an ensemble machine learning method. When an algorithm cannot make a 391 
prediction for a particular pair, the score passed to the ensemble method for that 392 
algorithm is zero. For example, if a pair of genes do not cooccur in any organisms, then 393 
their score for all gene organization algorithms is zero. The 12 algorithms implemented 394 
fall into four categories: phylogenetic profiling, phylogenetic structure, gene 395 
organization, and sequence-level methods (Fig. 1a). Of these, four algorithms are 396 
completely novel (G/L Distance, RP ContextTree, RP MirrorTree, and Gene Distance), 397 
three are novel applications of existing algorithms (TreeDistance, Moran’s I, Gene 398 
Vector), and the remaining five are refinements on existing algorithms. 399 
 400 
Phylogenetic Profiling 401 
 Phylogenetic profiling is a common technique that uses presence/absence (P/A) 402 
profiles of genes to investigate shared function. The approaches previously introduced 403 
in the literature use binary P/A profiles, where one represents the presence of a gene 404 
and zero represents its absence66. The first P/A approach used Hamming distances on 405 
binary profiles as a score67. Later, Jaccard index and mutual information were applied to 406 



 

 

score P/A profiles12,68. Subsequent work transformed P/A profiles into ancestral 407 
gain/loss (G/L) events and scored the correlation between events30. This transformation 408 
reduces redundancy for sets of organisms with low rates of gene gain and loss28,30. 409 
 EvoWeaver includes four phylogenetic profiling algorithms (Fig. 1b). The first 410 
algorithm, P/A MI, calculates bidirectional mutual information of binary P/A profiles using 411 
a recently introduced weighting scheme69. The second algorithm, P/A Jaccard, uses the 412 
Jaccard index of P/A profiles. The third algorithm, G/L Correlation, applies Fitch 413 
Parsimony70 to infer ancestral states on the species tree from P/A profiles. These G/L 414 
profiles include three states: -1 for gene loss, 0 for no change, and +1 for gene gain. 415 
The G/L Correlation score is defined as Pearson’s correlation coefficient of the ternary 416 
G/L profiles. 417 
 G/L Correlation fails to account for compensatory changes that do not occur on the 418 
same branch of the species tree, which are common in sequence evolution71. The fourth 419 
algorithm, G/L Distance, quantifies the evolutionary distance between G/L events 420 
assuming the time between gain or loss events is exponentially distributed. Thus, the 421 
score between a pair of events for two gene groups is calculated as	𝑤𝑒!"($!,$"), where w 422 
is +1 if the events are the same (i.e., both gain or both loss) and -1 if the events are 423 
different, and 𝑑(𝑣', 𝑣() is the distance between events 𝑣' and 𝑣( on the species tree. 424 
The distance between events on separate branches is defined as the total distance 425 
between their branch midpoints. The distance between events on the same branch is 426 
defined as the expected value of distance between two points randomly placed on a line 427 
segment (i.e., 1/3rd the branch length). For each pair of genes, events are paired to their 428 
closest event from the other group. The total score for the gene pair is the average 429 
score for all event pairs, and ranges from -1 to +1. 430 
 Statistical significance for P/A MI, P/A Jaccard, and G/L Correlation are calculated 431 
using Fisher’s Exact Test (two-way for P/A and three-way for G/L), and a p-value for 432 
G/L Distance is calculated using empirical values from permutation testing with 100 433 
replicates. 434 
 435 
Phylogenetic Structure 436 
 Gene tree structural comparisons were pioneered by MirrorTree32, which scores each 437 
pair of gene groups by the correlation of their pairwise sequence distances. Subsequent 438 
improvements to MirrorTree attempted to correct for background evolutionary signal 439 
prior to analysis72. These extensions, often referred to as ContextTree or ContextMirror, 440 
use different approaches to remove shared signal represented by the species 441 
tree31,56,73. More recently, SVD-phy was introduced as an alternative approach using 442 
BLAST to measure distance between sequences34,74. SVD-phy uses singular value 443 
decomposition to reduce redundant information contained in pairwise distances, which 444 
removes signal shared across all genes and improves overall predictions. However, this 445 
approach requires that all pairwise distances be simultaneously kept in memory. 446 
 EvoWeaver uses random projection in lieu of SVD for dimensionality reduction. 447 
Random projection is a surjective mapping that approximately preserves distances 448 
between vectors75. While traditional random projection uses a large matrix of random 449 
values, this requirement can be circumvented by generating values of the matrix on the 450 



 

 

fly with a preset random seed. Hence, this dimensionality reduction can be done with 451 
negligible memory overhead, allowing for efficient and replicable distribution across a 452 
compute cluster. The RP MirrorTree algorithm applies random projection to patristic 453 
distances and scores pairs of vectors using Spearman’s correlation coefficient. The RP 454 
ContextTree algorithm also subtracts the randomly projected species tree from each 455 
vector prior to scoring. RP ContextTree’s final scores are multiplied by the Jaccard 456 
index of overlap in organism membership to correct for spurious correlations caused by 457 
minimally overlapping sets. Statistical significance for both RP ContextTree and RP 458 
MirrorTree are calculated using the closed form solution for significance of Spearman’s 459 
correlation coefficient. 460 
 EvoWeaver also incorporates tree distance metrics to measure topological similarity. 461 
A variety of previously benchmarked metrics35 were implemented as measures of 462 
functional similarity, all of which were highly correlated in their tree distances. By 463 
default, EvoWeaver’s TreeDistance predictor uses normalized Robinson-Foulds 464 
Distance due to its low memory requirement and closed form solution for significance76. 465 
The score for each pair of genes was defined as 1 − 𝑇𝐷(𝑇', 𝑇(), where TD is the tree 466 
distance and 𝑇' and 𝑇( are gene trees. 467 
 468 
Gene Organization 469 
 Gene organization is commonly used as a signature of functional association. For 470 
example, a priori knowledge of genes that colocalize can be used to find biosynthetic 471 
gene clusters. Existing programs, such as antiSMASH39, use profile hidden Markov 472 
models to search for clusters of genes with known functional associations. However, 473 
these approaches cannot be used to find gene clusters de novo. STRING makes use of 474 
the distance in nucleotides between genes as a de novo predictor of functional 475 
association16. To our knowledge, analysis of gene organization is one of the most 476 
understudied approaches for de novo prediction of functional associations. 477 
 EvoWeaver incorporates three gene organization algorithms. Together, they provide 478 
a well-rounded view of gene organization: the first algorithm looks at whether genes are 479 
possibly transcribed together, the second measures how closely genes are located to 480 
each other, and the third quantifies the extent to which gene distances are preserved 481 
across phylogenies. The first algorithm, Transcription MI, examines the relative 482 
transcriptional direction of gene pairs. Conservation of transcriptional direction has been 483 
validated in prior work to be indicative of shared function77. The score for Transcription 484 
MI is defined as the bidirectional mutual information69 between transcriptional directions 485 
of gene pairs, with Fisher’s Exact Test used to determine statistical significance. 486 
 The second algorithm, Gene Distance, examines the separation between genes. For 487 
each pair of genes on the same chromosome, the distance 𝑑 is calculated as the 488 
absolute value of the difference in gene index. The index of a gene is its gene order in 489 
the chromosome, starting from one for the first gene. We used indices rather than 490 
nucleotide locations to mitigate the effect of variability in gene lengths. The score for 491 
each pair of sequences is defined as 𝑒'!", and the overall score for a pair of gene 492 
groups is the mean of their sequence pair scores. In this way, Gene Distance is 493 
maximized (1) when two genes are always adjacent (𝑑 = 1). Statistical significance is 494 



 

 

derived from the distribution of distances between two random points on a line 495 
segment78. 496 
 The third algorithm, Moran’s I, measures spatial autocorrelation among gene 497 
distances. Moran’s I requires pairwise weights represented by the inverse exponential 498 
of the patristic distances79 and values in the form of gene distances (𝑑). Moran’s I 499 
distinguishes between genes that are colocated purely due to low evolutionary 500 
divergence versus genes that have maintained a consistent relative distance in spite of 501 
evolutionary divergence. Statistical significance is calculated using the closed form 502 
solution to the expected value and variance of Moran’s I (ref. 80). 503 
 504 
Sequence-Level Methods 505 
 Covariation of residues is a common signal of protein-protein interactions, and 506 
numerous methods have been devised for this purpose. A popular approach is direct 507 
coupling analysis46, which fits a Potts model to a multiple sequence alignment in order 508 
to parse “direct effects” from “indirect effects.” Other algorithms using deep learning 509 
have been successfully applied to sequencing data for finding interaction sites between 510 
proteins81,82. While some previously developed approaches improved scaling83,84, many 511 
of these algorithms have prohibitively high computational complexity for high-throughput 512 
analysis. Additionally, the focus of these algorithms is on finding interaction sites 513 
between small numbers of proteins or proteins known a priori to have a high likelihood 514 
of interacting. 515 
 EvoWeaver implements two sequence-level methods. The first of these, Gene 516 
Vector, uses the gene sequence natural vector approach, developed to predict protein-517 
protein interactions48. We extended this algorithm to amino acids following the same 518 
theoretical model as the initial nucleotide-based method. We chose to use the natural 519 
vector without 2-mers or 3-mers, since the full vector incurred high computational 520 
overhead with a negligible difference in scores. For each pair of gene groups, we subset 521 
the sequences to the intersection of the organisms present in both groups. The natural 522 
vector for each group in the pair is the average of the natural vectors for each of its 523 
constituent sequences. We centered each natural vector assuming a null model of 524 
equally distributed nucleotides or amino acids. The final score and statistical 525 
significance for the pairing are calculated from Spearman’s correlation coefficient of the 526 
natural vectors. 527 
 The second approach, Sequence Info, extends a prior approach to measure the 528 
mutual information between sites within sequence alignments of each gene group47. For 529 
every pair of gene groups, we subset the sequences to the genomes that appear in both 530 
groups, and subset the sites to those with high information content (entropy ≥ 0.3 bits) 531 
using the MaskAlignment function in DECIPHER62. Mutual information is calculated for 532 
each pair of sites (i.e., columns) across both alignments after applying a background 533 
entropy correction along with an average product correction85. The final score is 534 
calculated as the average of the highest scoring pairing for each site. Statistical 535 
significance is calculated by applying Fisher’s combined probability test to the 536 
distribution of p-values across sites. 537 
 538 



 

 

Ensemble Methods 539 
 EvoWeaver combines the output of each of the aforementioned coevolutionary 540 
algorithms into a final prediction using an ensemble machine learning method. All 12 541 
algorithms were used as features for ensemble prediction (Fig. 2). For ensemble 542 
methods, we tested logistic regression, random forest, and neural network models in 543 
R65. Logistic regression was performed with the glm function, random forests using 544 
default parameters in the randomForest package86 (v4.7-1.1), and neural networks 545 
using the neuralnet package (v1.44.2). The neural network architecture was a feed 546 
forward network with 12 inputs, one hidden layer of matched size (i.e., 12), two output 547 
nodes (i.e., class=0 or class=1), and sigmoid activation functions on each node. We 548 
intentionally chose relatively simple architectures with default parameters for our 549 
ensemble models to maintain interpretability of the predictions and mitigate overfitting to 550 
the dataset. All models were evaluated using 5-fold cross validation without 551 
hyperparameter tuning. 552 
 Only random forest was used for hierarchical classification due to its better 553 
performance in the binary classification benchmarks. Hierarchical classification was also 554 
evaluated using 5-fold cross validation. Members of each class were distributed equally 555 
among each train/test fold. To prevent overfitting from high class imbalance in the 556 
complete dataset, we downsampled classes in each training set to match the size of the 557 
smallest class, Direct Connection, with 1,948 members. This meant that each class in 558 
the train set for each fold had 1,558 members (i.e., 80%). Testing was done on the 559 
complete (unbalanced) test set, which comprised 203,669 - 203,674 members (i.e., 560 
~20%) per fold. Each pair was in exactly one test set. Feature importance for the 561 
random forest model was calculated using permutation importance, which was chosen 562 
over mean decrease in Gini impurity since the latter has been shown to produce biased 563 
estimates87.  564 
 To construct an example network, we first created a weighted adjacency matrix from 565 
the random forest predictions. Each node represented a single gene group and was 566 
connected to its top two Direct Connection predictions with edges of weight 1.0. All 567 
predicted Same Module pairs were connected with edges of weight 0.5. Our basis for 568 
this approach is that most nodes in KEGG are directly connected to two neighbors, and 569 
other nodes in the same module are less important than direct connections. We then 570 
used label propagation implemented in the igraph package88 (v1.5.0.1) to perform 571 
community detection. The network in Fig. 3c was randomly chosen from the resulting 572 
communities. 573 
 A possible concern with holding out pairs in cross validation is that ensemble 574 
methods could use spurious signals to simply distinguish highly connected gene groups 575 
from less connected groups. We further validated our results by reevaluating our 576 
ensemble classifier using 10-fold cross validation with gene group holdouts rather than 577 
pair holdouts. Within each fold, 10% of gene groups were randomly selected, and all 578 
pairs involving at least one of these groups was taken as the test set. The resulting 579 
train/test sets each comprised roughly 80/20% of the data (respectively), which forms a 580 
comparable scenario to 5-fold cross validation with pair holdouts. The results of this 581 
classification were virtually identical to prior results (Fig. S3), implying that EvoWeaver 582 



 

 

is not heavily relying on features of the individual gene groups themselves when making 583 
predictions. This is consistent with the notion that most gene groups have few direct 584 
connections and thus learning to distinguish highly connected gene groups gives little 585 
predictive power. 586 
 587 
Comparison with STRING 588 
 589 
 Data for STRING's clusters of orthologous genes (COGs) and interactions were 590 
downloaded from STRING v12.0. Since STRING's COG membership sometimes did not 591 
perfectly correspond to KEGG's KO groups, we tabulated the KO group assignments for 592 
sequences belonging to each STRING COG. Overall, 6,849 COGs had at least one 593 
sequence that could be mapped to a KO group in KEGG. Each STRING COG was 594 
mapped to KEGG Module blocks using its majority (≥ 50%) KEGG KO group. A total of 595 
6,311 COGs had a majority KO group, and 4,481 (71%) of these COGs had perfect 596 
consensus. Only 538 STRING COGs lacked a consensus KO group, and these COGs 597 
were excluded from analysis. 598 
 STRING's stated goal for its Total Score is to estimate how likely a reported 599 
functional linkage between two proteins “is at least as specific as that between an 600 
average pair of proteins annotated on the same ‘map’ or ‘pathway’ in KEGG”49. 601 
Therefore, EvoWeaver’s analogous predictions were made by summing the probabilities 602 
predicted for Direct Connection, Same Module, and Same Pathway in the hierarchical 603 
classification (Fig. 3). A total of 3,446 pairs of COGs in the matched dataset belonged to 604 
the Same Pathway, Same Module, or Direct Connection categories in KEGG. An 605 
equivalent number of negatives were randomly sampled from the remaining pairs in a 606 
similar manner to the Modules benchmark. STRING provides its Total Score calculation 607 
within a Python script available on their website. We used this formula to calculate the 608 
hypothetical Total Score using subsets of STRING's evidence streams. The sequence 609 
of AUROCs in Figure 4a was obtained by sequentially adding the evidence stream with 610 
the lowest impact on AUROC to the Total Score calculation. 611 
 612 
Experimental Details 613 
 614 
 All analysis and plotting was performed with R (v4.3.0). Area under receiver operator 615 
characteristic curves and precision-recall curves were calculated with the auc function in 616 
the DescTools package (v0.99.49) for R. Algorithms were implemented in EvoWeaver 617 
using R and C programming languages, with user-exposed methods available in R via 618 
the SynExtend package (v1.16.0). SynExtend is dependent on the DECIPHER package 619 
(v2.28.0) and is distributed via the Bioconductor software repository89. Users can run 620 
EvoWeaver by initializing an EvoWeaver object in R with the EvoWeaver function, and 621 
then using the predict function to run component algorithms. Local analyses were 622 
performed on a MacBook Pro with M1 Pro CPU and 32GB of RAM. Distributed 623 
computing was performed on the Open Science Grid90. Phylogenetic tree reconstruction 624 
used eight core nodes with 8 - 16GB RAM and 8GB disk space, and pairwise 625 
coevolutionary score calculations with EvoWeaver used single core nodes with 2 - 4GB 626 



 

 

RAM and 2 - 4GB disk space. Computers matching these node specifications varied 627 
based on availability and Open Science Grid scheduling. Scripts for reproducing all 628 
analyses are available on GitHub (https://github.com/WrightLabScience/EvoWeaver-629 
ExampleCode). Datasets are available from Zenodo (DOI: 10.5281/zenodo.10266140). 630 
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FIGURES 909 
 910 

 911 
Figure 1: Overview of the EvoWeaver algorithm and benchmarking. (a) 912 
Phylogenetic trees from gene orthologs serve as the primary input to EvoWeaver. Four 913 
categories of coevolutionary signal are quantified for each pair of genes. These signals 914 
are combined in an ensemble classifier to predict functional relationships between gene 915 
pairs. (b) Functional associations often result in correlated gain/loss patterns on a 916 
phylogenetic tree of the species. EvoWeaver assesses the presence/absence patterns, 917 
correlation between gain/loss events, and distance between gain/loss events as signals 918 
of coevolution. (c) Similarity in phylogenetic structure is another indicator of coevolution 919 
between genes. EvoWeaver computes topological distance as well as correlation in 920 
patristic distances following dimensionality reduction using random projection. (d) 921 
Functionally associated genes sometimes cluster on the genome due to co-regulation or 922 
horizontal gene transfer. EvoWeaver derives signals from the conservation in 923 
transcriptional direction and the distance between gene pairs. (e) Functional 924 
associations sometimes cause concerted changes in sequences that are interrogated 925 
by EvoWeaver. (f) Proteins involved in the same complex are functionally associated 926 
and can be identified through signals of coevolution. The goal of the Complexes 927 
benchmark is to distinguish orthology groups in the same complex (i.e., positives) from 928 
those in different complexes (i.e., negatives). (g) Functional associations between 929 
proteins that are adjacent in the same module are stronger than those between different 930 



 

 

modules. The goal of the Modules benchmark is to distinguish adjacent proteins in the 931 
same module from independent modules.  932 



 

 

 933 
Figure 2: EvoWeaver's ensemble predictions outperform individual algorithms on 934 
the Modules benchmark. Coevolutionary approaches were compared for their ability to 935 
discern adjacent proteins in KEGG modules (i.e., 1,948 positives) from proteins in 936 
distinct modules (i.e., 1,948 negatives). No single source of coevolutionary signal 937 
greatly outcompeted all other sources. However, EvoWeaver's ensemble predictions 938 
that combine all component sources of coevolutionary signal substantially improved 939 
predictive accuracy, as seen by larger areas under the curves. Inset of the receiver 940 
operating characteristic highlights the region with low false positive rates. Scores from 941 
individual algorithms tended to have low correlation except within similar categories of 942 
coevolutionary signal (i.e., boxed groups in the heatmap), suggesting that the ensemble 943 
approach is superior because it combines quasi-orthogonal coevolutionary signals. 944 
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Spearman's correlation from positive and negative sets is averaged to correct for 945 
artificial correlation among high performing algorithms.  946 



 

 

Figure 3: EvoWeaver is sufficiently accurate to hierarchically classify functional 947 
associations. (a) The confusion matrix of five level classifications indicates that 948 
EvoWeaver's ensemble predictions (i.e., random forest) rarely confuse proteins within 949 
the same module with those from different modules. Values represent the percent of 950 
each actual category classified to each predicted category. (b) The best performing 951 
algorithm from each category on the Modules benchmark also was assigned greater 952 
feature importance by the random forest model in hierarchical classification. All features 953 
were important in the ensemble's predictions, further underscoring the benefit of using 954 
multiple coevolutionary signals. Error bars denote the range of importances across each 955 
train/test fold. (c-d) Hierarchical classifications permit the partial inference of 956 
biochemical pathways directly from sequence information without any external biological 957 
knowledge. EvoWeaver's ensemble predictions for genes involved in prodigiosin 958 
biosynthesis generally match experimentally verified connections in KEGG. Panel (c) 959 
displays the original pathway from KEGG, and panel (d) overlays EvoWeaver’s 960 
hierarchical classifications. Note that pigA, pigJ, pigH, pigM, and pigF belong to both 961 
modules.  962 
  963 



 

 

 964 
Figure 4: EvoWeaver outperforms STRING without reliance on external data. (a) 965 
Predictive accuracy was compared on 6,892 pairs of gene groups that overlapped 966 
between STRING and the Modules benchmark. Area under the ROC curve (AUROC) is 967 
shown for discerning between pairs sharing the same non-global pathway in KEGG 968 
(i.e., positives) versus pairs in different non-global pathways (i.e., negatives). STRING's 969 
predictions are a composite of seven evidence streams, including three coevolutionary 970 
evidence streams (i.e., Gene Fusion, Cooccurrence, Gene Neighborhood). Sequentially 971 
incorporating evidence streams from least to most beneficial demonstrates their 972 
marginal impact on STRING's reported Total Score. Text Mining and Databases were 973 
the most impactful evidence streams. Despite STRING's predictions incorporating 974 
KEGG into its Databases evidence stream, EvoWeaver's Random Forest predictions 975 
outperformed STRING's Total Score while only using sequence information. (b) 976 
Unsurprisingly, some of EvoWeaver's component predictors were modestly correlated 977 
with STRING's evidence streams. For example, STRING's Cooccurrence score, based 978 
on SVD-phy, is correlated with EvoWeaver's phylogenetic profiling methods, and 979 
STRING's Gene Neighborhood score is correlated with EvoWeaver's Gene Distance 980 
predictor. Spearman’s correlation is calculated in the same manner as in Figure 2.  981 



 

 

 982 
Figure 5: EvoWeaver's ensemble predictions can generate high fidelity biological 983 
hypotheses. (a) The protein product of B3GNT5 promotes the expression of 984 
ST6GAL155, although this connection is missing in KEGG and STRING. (b) 985 
EvoWeaver's component and ensemble predictions indicate that B3GNT5 and 986 



 

 

ST6GAL1 are functionally associated, which is supported by experiments in human cell 987 
culture55. (c) Phylogenetic profiling demonstrates a pattern of association between 988 
B3GNT5 and ST6GAL1, although it is supported by relatively few gain/loss events on 989 
the species tree. (d) Organisms with both B3GNT5 and ST6GAL1 on the same 990 
chromosome display a clear linkage in gene distance and transcriptional direction. (e) 991 
Shared patristic distances from both gene trees are correlated, especially after 992 
compression with random projection, suggesting a high degree of coevolution between 993 
B3GNT5 and ST6GAL1. (f) Gene sequence natural vectors for both B3GNT5 and 994 
ST6GAL1 are moderately correlated, implying similar residue compositions and 995 
providing further signal of coevolution.  996 



 

 

Symbol Meaning Example Interpretation Example 
Module 

K12345 Orthology 
group 
#12345 

K05308 Each code is comprised of 
“K” followed by a unique 
5-digit string. K05308 
encodes gene gnaD 

Any 

Space Direct 
connection 

K05308 K18126 K05308 
performs/facilitates a 
chemical reaction 
immediately prior to 
K18126 

M00633 

Plus (+) Complex K02111+K02112 K02111 and K02112 
belong to the same 
complex 

M00157 

Minus (-) Optional 
Complex 

-K03944 K03944 is an optional 
component of the complex 

M00143 

Parentheses Optional 
Components 

(K01681,K01682) Either K01681 or K01682 
performs/facilitates this 
chemical reaction 

M00012 

Newline Separate 
Components 

K21428 K21778 K21779 
K21787 

K21779 and K21787 are 
in the same module, but 
they participate in different 
stages of the module 

M00837 

 997 
Table S1: Description of KEGG Modules. Each module in KEGG is specified with a 998 
plain text definition composed of orthology groups and symbols specifying relationships.  999 



 

 

 1000 
Figure S1: EvoWeaver's ensemble predictions outperform individual algorithms 1001 
on the Complexes benchmark. Coevolutionary approaches were compared for their 1002 
ability to discern pairs of KO groups that complex (i.e., 867 positives) from unrelated 1003 
pairs of KO groups (i.e., 867 negatives). Phylogenetic profiling algorithms tended to 1004 
outperform other methods, though all categories of analysis showed strong 1005 
performance. EvoWeaver's ensemble predictions that combine all component sources 1006 
of coevolutionary signal improved predictive accuracy, as seen by larger areas under 1007 
the curves. Inset of the receiver operating characteristic highlights the region with low 1008 
false positive rates. Scores from individual algorithms tended to have low correlation 1009 
except within similar categories of coevolutionary signal (i.e., boxed groups in the 1010 
heatmap), suggesting that the ensemble approach is superior because it combines 1011 
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quasi-orthogonal coevolutionary signals. Spearman's correlation from positive and 1012 
negative sets is averaged to correct for artificial correlation among high performing 1013 
algorithms.  1014 



 

 

 1015 
 1016 
Figure S2: EvoWeaver’s hierarchical classifications at any confidence level. Each 1017 
gene group pairing was assigned to its highest confidence predicted category without 1018 
imposing a minimum confidence threshold. Results are analogous to Fig. 3a, except 1019 
with more pairs predicted in the Same Global Pathway category and slightly higher 1020 
misclassification rates.  1021 



 

 

 1022 
Figure S3: EvoWeaver’s hierarchical classifications are consistent using gene 1023 
holdouts or gene pair holdouts. Each point denotes the percentage of pairs in each 1024 
actual category (point color) classified to each predicted category (point shape). The 1025 
dashed identity line (i.e., y=x) represents a scenario of perfect consistency between the 1026 
two evaluations. Note the log scaled axes used for visual clarity. Resulting 1027 
classifications are almost identical between holdout approaches, implying that 1028 
EvoWeaver is not simply learning to identify highly connected gene groups. 1029 
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